Format

Send to

Choose Destination
Chemosphere. 2018 Oct;208:951-959. doi: 10.1016/j.chemosphere.2018.06.025. Epub 2018 Jun 5.

Selective adsorption of phenanthrene dissolved in Tween 80 solution using activated carbon derived from walnut shells.

Author information

1
Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan University, Wuhan, 430079, China; Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China.
2
Department of Environmental Science and Engineering, Hubei Environmental Remediation Material Engineering Technology Research Center, Wuhan University, Wuhan, 430079, China; Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China. Electronic address: eeng@whu.edu.cn.

Abstract

In order to remove phenanthrene (PHE) from surfactant solution, activated carbon (AC) was prepared from waste walnut shells and characterized by Brunauer-Emmett-Teller (BET), field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). For solutions containing PHE and Tween 80, the former was effectively removed and the latter could be economically recovered after adsorption by the prepared AC. The π-π interactions and oxygen containing functional groups of AC play important roles in the PHE adsorption process. The adsorption kinetics process could best be described using the pseudo-second-order model and adsorption isotherm results indicated that the Langmuir model best fitted the data. Adsorption thermodynamic parameters, including enthalpy change, Gibbs free energy change and entropy change were calculated. Under optimal conditions, PHE removal and Tween 80 recovery reached 95% and 90%, respectively. The results suggest that AC provided an efficient alternative for selective adsorption of PHE and recovery of Tween 80 after the soil washing processes. After adsorption AC could be regenerated with ethanol and even if AC were regenerated twice PHE removal reached 80%.

KEYWORDS:

Activated carbon; Polycyclic aromatic hydrocarbons; Recovery; Selective adsorption; Tween 80

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center