Format

Send to

Choose Destination
Mol Med Rep. 2018 Sep;18(3):3314-3324. doi: 10.3892/mmr.2018.9312. Epub 2018 Jul 24.

Screening of exosomal miRNAs derived from subcutaneous and visceral adipose tissues: Determination of targets for the treatment of obesity and associated metabolic disorders.

Author information

1
Basic Medical School, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, P.R. China.
2
The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia 010070, P.R. China.

Abstract

Exosomal micro (mi)RNAs have been suggested to have important roles in abdominal obesity, and to be associated with metabolic alterations via posttranscriptional regulation of target genes. However, exosomal miRNA profiles in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have rarely been investigated. In the present study, microarray data were obtained from the Gene Expression Omnibus database with the following accession numbers: GSE68885 (exosomal miRNAs in SAT obtained from seven patients with obesity and five lean patients), GSE50574 (exosomal miRNAs in VAT obtained from seven patients with obesity and five lean patients) and GSE29718 [mRNAs in SAT (obtained from seven patients with obesity and eight lean patients) and VAT (obtained from three patients with obesity and two lean patients)]. Differentially expressed (DE)‑miRNAs and differentially expressed genes (DEGs) were identified using the Linear Models for Microarray Data method, and mRNA targets of DE‑miRNAs were predicted using the miRWalk2.0 database. Potential functions of DE‑miRNA target genes were determined using the Database for Annotation, Visualization and Integrated Discovery. As a result, 10 exosomal DE‑miRNAs were identified in SAT between patients with obesity and lean patients, while 58 DE‑miRNAs were identified in VAT between patients with obesity and lean patients. miRNA (miR)‑4517 was revealed to be a downregulated exosomal miRNA between SAT and VAT, while the other DE‑miRNAs were SAT‑(e.g. hsa‑miR‑3156‑5p and hsa‑miR‑4460) or VAT‑(e.g. hsa‑miR‑582‑5p, hsa‑miR‑566 and miR‑548) specific. Following overlapping with the target genes of DE‑miRNAs, only one DEG [cluster of differentiation 86 (CD86)] was identified in SAT samples, whereas 25 DEGs (e.g. fibroblast growth factor 2 (FGF2), FOS like 2, AP‑1 transcription factor subunit (FOSL2); and adenosine monophosphate deaminase 3 (AMPD3)] were identified in VAT samples. CD86 was revealed to be regulated by hsa‑miR‑3156‑5p; whereas FGF2, FOSL2 and AMPD3 were revealed to be regulated by hsa‑miR‑582‑5p, hsa‑miR‑566 and miR‑548, respectively. Functional enrichment analysis demonstrated that these target genes may be associated with inflammation. In conclusion, exosomal miRNAs may represent underlying therapeutic targets for the treatment of abdominal obesity and metabolic disorders via regulation of inflammatory genes.

PMID:
30066923
PMCID:
PMC6102639
DOI:
10.3892/mmr.2018.9312
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Spandidos Publications Icon for PubMed Central
Loading ...
Support Center