Format

Send to

Choose Destination
Int J Mol Sci. 2018 Jul 23;19(7). pii: E2148. doi: 10.3390/ijms19072148.

The Peroxisome Proliferator-Activated Receptor α (PPARα) Agonist Pemafibrate Protects against Diet-Induced Obesity in Mice.

Author information

1
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. s1721279@s.tsukuba.ac.jp.
2
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. ynakagawa@md.tsukuba.ac.jp.
3
International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. ynakagawa@md.tsukuba.ac.jp.
4
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. asayo.oishi@gmail.com.
5
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. shan@md.tsukuba.ac.jp.
6
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. gracelynwang@yahoo.co.jp.
7
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. eak_amos@md.tsukuba.ac.jp.
8
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. s1530432@u.tsukuba.ac.jp.
9
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. ymizunoe@md.tsukuba.ac.jp.
10
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. iwasaki-tkb@umin.ac.jp.
11
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. msekiya@md.tsukuba.ac.jp.
12
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. t-matsuz@md.tsukuba.ac.jp.
13
Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. hshimano@md.tsukuba.ac.jp.
14
International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan. hshimano@md.tsukuba.ac.jp.
15
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan. hshimano@md.tsukuba.ac.jp.
16
Japan Agency for Medical Research and Development⁻Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo 100-1004, Japan. hshimano@md.tsukuba.ac.jp.

Abstract

Peroxisome proliferator-activated receptor α (PPARα) is a therapeutic target for hyperlipidemia. Pemafibrate (K-877) is a new selective PPARα modulator activating PPARα transcriptional activity. To determine the effects of pemafibrate on diet-induced obesity, wild-type mice were fed a high-fat diet (HFD) containing pemafibrate for 12 weeks. Like fenofibrate, pemafibrate significantly suppressed HFD-induced body weight gain; decreased plasma glucose, insulin and triglyceride (TG) levels; and increased plasma fibroblast growth factor 21 (FGF21). However, compared to the dose of fenofibrate, a relatively low dose of pemafibrate showed these effects. Pemafibrate activated PPARα transcriptional activity in the liver, increasing both hepatic expression and plasma levels of FGF21. Additionally, pemafibrate increased the expression of genes involved in thermogenesis and fatty acid oxidation, including Ucp1, Cidea and Cpt1b in inguinal adipose tissue (iWAT) and the mitochondrial marker Elovl3 in brown adipose tissue (BAT). Therefore, pemafibrate activates thermogenesis in iWAT and BAT by increasing plasma levels of FGF21. Additionally, pemafibrate induced the expression of Atgl and Hsl in epididymal white adipose tissue, leading to the activation of lipolysis. Taken together, pemafibrate suppresses diet-induced obesity in mice and improves their obesity-related metabolic abnormalities. We propose that pemafibrate may be useful for the suppression and improvement of obesity-induced metabolic abnormalities.

KEYWORDS:

FGF21; PPARα; SPPARMα; lipid metabolism; obesity; pemafibrate

PMID:
30041488
PMCID:
PMC6073532
DOI:
10.3390/ijms19072148
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center