Format

Send to

Choose Destination

Comparative Analysis of Algorithmic Approaches for Auto-Coding with ICD-10-AM and ACHI.

Author information

1
School of Computing, Engineering & Mathematics, Western Sydney University, Australia.

Abstract

Clinical coding is done using ICD-10-AM (International Classification of Diseases, version 10, Australian Modification) and ACHI (Australian Classification of Health Interventions) in acute and sub-acute hospitals in Australia for funding, insurance claims processing and research. The task of assigning a code to an episode of care is a manual process. This has posed challenges due to increase set of codes, the complexity of care episodes, and large training and recruitment costs of clinical coders. Use of Natural Language Processing (NLP) and Machine Learning (ML) techniques is considered as a solution to this problem. This paper carries out a comparative analysis on a selected set of NLP and ML techniques to identify the most efficient algorithm for clinical coding based on a set of standard metrics: precision, recall, F-score, accuracy, Hamming loss and Jaccard similarity.

KEYWORDS:

Classifiers; F-score; Hamming Loss; Jaccard Similarity; Machine Learning; Natural Language Processing; Precision; Recall

PMID:
30040686
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IOS Press
Loading ...
Support Center