Format

Send to

Choose Destination
J Environ Qual. 2018 Jul;47(4):726-734. doi: 10.2134/jeq2017.08.0318.

Building an Open Science Framework to Model Soil Organic Carbon.

Abstract

As funding agencies embrace open science principles that encourage sharing data and computer code developed to produce research outputs, we must respond with new modes of publication. Furthermore, as we address the expanding reproducibility crisis in the sciences, we must work to release research materials in ways that enable reproducibility-publishing data, computer code, and research products in addition to the traditional journal article. Toward addressing these needs, we present an example framework to model and map soil organic carbon (SOC) in the cereal grains production region of the northwestern United States. Primarily associated with soil organic matter, SOC relates to many soil properties that influence resiliency and soil health for agriculture. It is also critical for understanding soil-atmospheric C flux, a significant part of the overall C budget of the Earth. The technique for modeling soil properties uses seven categories of environmental input data to make predictions: known soil attributes, climatic values, organisms present, relief, parent material, age, and spatial location. We gather data representing these categories from various public sources. The map is produced using a random forest statistical model with inputs to predict SOC content on a 30-m spatial grid. All modeling components including input data, metadata, computer code, and output products are made freely available under an explicit open-source license. In this way, reproducibility is supported, the methods and code released are available to be reused by other researchers, and the research products are open to critical review and improvement.

PMID:
30025068
DOI:
10.2134/jeq2017.08.0318
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Science Societies
Loading ...
Support Center