Format

Send to

Choose Destination
J R Soc Interface. 2018 Jul;15(144). pii: 20180305. doi: 10.1098/rsif.2018.0305.

Mechanically inferior constituents in spider silk result in mechanically superior fibres by adaptation to harsh hydration conditions: a molecular dynamics study.

Author information

1
Department of Mechanical Engineering, Korea University, 02841 Seoul, Republic of Korea.
2
Institute of Advanced Machinery Design and Technology, Korea University, 02841 Seoul, Republic of Korea.
3
Department of Mechanical Engineering, Korea University, 02841 Seoul, Republic of Korea nass@korea.ac.kr.

Abstract

Spider silk exhibits mechanical properties such as high strength and toughness that are superior to those of any man-made fibre (Bourzac 2015 Nature519, S4-S6 (doi:10.1038/519S4a)). This high strength and toughness originates from a combination of the crystalline (exhibiting robust strength) and amorphous (exhibiting superb extensibility) regions present in the silk (Asakura et al 2015 Macromolecules48, 2345-2357 (doi:10.1021/acs.macromol.5b00160)). The crystalline regions comprise a mixture of poly-alanine and poly-glycine-alanine. Poly-alanine is expected to be stronger than poly-glycine-alanine, because alanine exhibits greater interactions between the strands than glycine (Tokareva et al 2014 Acta Biomater.10, 1612-1626 (doi:10.1016/j.actbio.2013.08.020)). We connect this characteristic sequence to the interactions observed upon the hydration of spider silk. Like most proteinaceous materials, spider silks become highly brittle upon dehydration, and thus water collection is crucial to maintaining its toughness (Gosline et al 1986 Endeavour10, 37-43 (doi:10.1016/0160-9327(86)90049-9)). We report on the molecular dynamic simulations of spider silk structures with different sequences for the crystalline region of the silk structures, of wild-type (WT), poly-alanine, and poly-glycine-alanine. We reveal that the characteristic sequence of spider silk results in the β-sheets being maintained as the degree of hydration changes and that the high water collection capabilities of WT spider silk sequence prevent the silk from becoming brittle and weak in dry conditions. The characteristic crystalline sequence of spider dragline silk is therefore relevant not for maximizing the interactions between the strands but for adaption to changing hydration conditions to maintain an optimal performance even in harsh conditions.

KEYWORDS:

hydration effects; material characterization; molecular dynamics; spider silk

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center