Format

Send to

Choose Destination
IEEE J Biomed Health Inform. 2019 Jul;23(4):1404-1416. doi: 10.1109/JBHI.2018.2856276. Epub 2018 Jul 16.

Automated Layer Segmentation of Retinal Optical Coherence Tomography Images Using a Deep Feature Enhanced Structured Random Forests Classifier.

Abstract

Optical coherence tomography (OCT) is a high-resolution and noninvasive imaging modality that has become one of the most prevalent techniques for ophthalmic diagnosis. Retinal layer segmentation is very crucial for doctors to diagnose and study retinal diseases. However, manual segmentation is often a time-consuming and subjective process. In this work, we propose a new method for automatically segmenting retinal OCT images, which integrates deep features and hand-designed features to train a structured random forests classifier. The deep convolutional features are learned from deep residual network. With the trained classifier, we can get the contour probability graph of each layer; finally, the shortest path is employed to achieve the final layer segmentation. The experimental results show that our method achieves good results with the mean layer contour error of 1.215 pixels, whereas that of the state of the art was 1.464 pixels, and achieves an F1-score of 0.885, which is also better than 0.863 that is obtained by the state of the art method.

PMID:
30010602
DOI:
10.1109/JBHI.2018.2856276

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center