Format

Send to

Choose Destination
IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):379-393. doi: 10.1109/TPAMI.2018.2792452. Epub 2018 Jan 12.

Learning Pose-Aware Models for Pose-Invariant Face Recognition in the Wild.

Abstract

We propose a method designed to push the frontiers of unconstrained face recognition in the wild with an emphasis on extreme out-of-plane pose variations. Existing methods either expect a single model to learn pose invariance by training on massive amounts of data or else normalize images by aligning faces to a single frontal pose. Contrary to these, our method is designed to explicitly tackle pose variations. Our proposed Pose-Aware Models (PAM) process a face image using several pose-specific, deep convolutional neural networks (CNN). 3D rendering is used to synthesize multiple face poses from input images to both train these models and to provide additional robustness to pose variations at test time. Our paper presents an extensive analysis of the IARPA Janus Benchmark A (IJB-A), evaluating the effects that landmark detection accuracy, CNN layer selection, and pose model selection all have on the performance of the recognition pipeline. It further provides comparative evaluations on IJB-A and the PIPA dataset. These tests show that our approach outperforms existing methods, even surprisingly matching the accuracy of methods that were specifically fine-tuned to the target dataset. Parts of this work previously appeared in [1] and [2].

PMID:
29994497
DOI:
10.1109/TPAMI.2018.2792452

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center