Utility of physiologically based pharmacokinetic (PBPK) modeling in oncology drug development and its accuracy: a systematic review

Eur J Clin Pharmacol. 2018 Nov;74(11):1365-1376. doi: 10.1007/s00228-018-2513-6. Epub 2018 Jul 5.

Abstract

Purpose: Physiologically based pharmacokinetic (PBPK) modeling, a mathematical modeling approach which uses a pharmacokinetic model to mimick human physiology to predict drug concentration-time profiles, has been used for the discover and development of drugs in various fields, including oncology, since 2000. There have been a few general review articles on the utilization of PBPK in the development of oncology drugs, but these do not include an evaluation of model prediction accuracy. We therefore conducted a systematic review to define the accuracy of PBPK model prediction and its utility throughout all the developmental phases of oncology drugs.

Methods: A systematic search was performed in the PubMed, PubMed Central and Cochrane Library databases from 1980 to February 2017 for articles (1) written in English, (2) focused on oncology or antineoplastic or anticancer drugs, tumor or cancer or anticancer drugs listed in the U.S. National Institutes of Health and (3) involving a PBPK model. The absolute-average-folding-errors (AAFEs) of the area under the curve (AUC) between predicted and observed values in each article were calculated to assess model prediction accuracy.

Results: Of the 2341 articles initially identified by our search of the databases, 40 were included in the review analysis. These articles reported on six types of studies, i.e. in vivo (n = 4), first-in-human (n = 5), phase II/III clinical trials (n = 9), organ impairment (n = 3), pediatrics (n = 4) and drug-drug interactions (n = 15). AAFEs of the predicted AUC for all groups of studies were within 1.3-fold of each other despite variations in experimental methodologies.

Conclusion: PBPK modeling is a potential tool which can be effectively applied throughout all phases of oncology drug development. The number of experimental animals and human participants enrolled in the studies can be reduced using PBPK modeling and PBPK-population-PK modeling. The limited number of publications of unsuccessful model application to date may contribute to bias toward the usefulness of modeling.

Keywords: Accuracy; Oncology drug development; Physiologically based pharmacokinetic modeling; Systematic review.

Publication types

  • Systematic Review

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage*
  • Antineoplastic Agents / pharmacokinetics
  • Area Under Curve
  • Drug Development
  • Humans
  • Models, Biological*
  • Neoplasms / drug therapy*
  • Reproducibility of Results

Substances

  • Antineoplastic Agents