Send to

Choose Destination
Proc Natl Acad Sci U S A. 1985 Nov;82(21):7294-8.

The ets sequence from the transforming gene of avian erythroblastosis virus, E26, has unique domains on human chromosomes 11 and 21: both loci are transcriptionally active.


Human DNA segments homologous to the ets region from the transforming gene of avian erythroblastosis virus, E26, were molecularly cloned and shown to be closely related to the viral equivalent by hybridization and partial sequence analysis. The transforming gene of E26 has a tripartite origin with the structure delta gag [1.2 kilobases (kb) from the viral gag gene]-myb(0.9 kb from the chicken myb gene)-ets (1.6 kb from the chicken ets gene). Human ets DNA is located on two distinct human chromosomes. The human ets-1 locus on chromosome 11 encodes a single mRNA of 6.8 kb; the second locus, ets-2 on chromosome 21, encodes three mRNAs of 4.7, 3.2, and 2.7 kb. The ets-related sequences of human DNA on chromosomes 11 and 21 are discontiguous, except for a small overlap region encoding 14 amino acids, where 12 are conserved between these two loci. By contrast, the chicken homolog has contiguous ets-1 and ets-2 sequences and is primarily expressed in normal chicken cells as a single 7.5-kb mRNA. We conclude that the ets sequence shared by the virus, the chicken, and humans is likely to contain at least two dissociable functional domains, ets-1 and ets-2. Thus, the tripartite transforming gene of E26 includes four distinct domains that may be functionally relevant for the transforming function of the virus (delta gag, myb, ets-1, and ets-2).

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center