Format

Send to

Choose Destination
Ecology. 2018 Oct;99(10):2272-2283. doi: 10.1002/ecy.2441. Epub 2018 Aug 21.

Topography and neighborhood crowding can interact to shape species growth and distribution in a diverse Amazonian forest.

Author information

1
Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, 90095-1606, USA.
2
AMAP (botAnique et Modélisation de l'Architecture des Plantes et des végétations), IRD, CIRAD, CNRS, INRA, Université de Montpellier, 34398, Montpellier Cedex 5, France.
3
Department of Biology, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
4
Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, New York, 10027, USA.
5
Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Apartado 17-01-2184, Quito, Ecuador.
6
Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama.
7
Department of Plant Biology, Southern Illinois University, Carbondale, Illinois, 62901-6509, USA.

Abstract

Abiotic constraints and biotic interactions act simultaneously to shape communities. However, these community assembly mechanisms are often studied independently, which can limit understanding of how they interact to affect species dynamics and distributions. We develop a hierarchical Bayesian neighborhood modeling approach to quantify the simultaneous effects of topography and crowding by neighbors on the growth of 124,704 individual stems ≥1 cm DBH for 1,047 tropical tree species in a 25-ha mapped rainforest plot in Amazonian Ecuador. We build multi-level regression models to evaluate how four key functional traits (specific leaf area, maximum tree size, wood specific gravity and seed mass) mediate tree growth response to topography and neighborhood crowding. Tree growth is faster in valleys than on ridges and is reduced by neighborhood crowding. Topography and crowding interact to influence tree growth in ~10% of the species. Specific leaf area, maximum tree size and seed mass are associated with growth responses to topography, but not with responses to neighborhood crowding or with the interaction between topography and crowding. In sum, our study reveals that topography and neighborhood crowding each influence tree growth in tropical forests, but act largely independently in shaping species distributions. While traits were associated with species response to topography, their role in species response to neighborhood crowding was less clear, which suggests that trait effects on neighborhood dynamics may depend on the direction (negative/positive) and degree of symmetry of biotic interactions. Our study emphasizes the importance of simultaneously assessing the individual and interactive role of multiple mechanisms in shaping species dynamics in high diversity tropical systems.

KEYWORDS:

community dynamics; functional traits; growth model; spatial interactions; species coexistence; topographic gradients; tropical forests

PMID:
29975420
DOI:
10.1002/ecy.2441
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center