Format

Send to

Choose Destination
Stat Methods Med Res. 2019 Aug;28(8):2455-2474. doi: 10.1177/0962280218784726. Epub 2018 Jul 3.

Sample size for binary logistic prediction models: Beyond events per variable criteria.

Author information

1
1 Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.
2
2 Centre for Statistics in Medicine, Botnar Research Centre, University of Oxford, Oxford, UK.

Abstract

Binary logistic regression is one of the most frequently applied statistical approaches for developing clinical prediction models. Developers of such models often rely on an Events Per Variable criterion (EPV), notably EPV ≥10, to determine the minimal sample size required and the maximum number of candidate predictors that can be examined. We present an extensive simulation study in which we studied the influence of EPV, events fraction, number of candidate predictors, the correlations and distributions of candidate predictor variables, area under the ROC curve, and predictor effects on out-of-sample predictive performance of prediction models. The out-of-sample performance (calibration, discrimination and probability prediction error) of developed prediction models was studied before and after regression shrinkage and variable selection. The results indicate that EPV does not have a strong relation with metrics of predictive performance, and is not an appropriate criterion for (binary) prediction model development studies. We show that out-of-sample predictive performance can better be approximated by considering the number of predictors, the total sample size and the events fraction. We propose that the development of new sample size criteria for prediction models should be based on these three parameters, and provide suggestions for improving sample size determination.

KEYWORDS:

EPV; Logistic regression; prediction models; predictive performance; sample size; simulations

PMID:
29966490
DOI:
10.1177/0962280218784726

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center