Format

Send to

Choose Destination
Mol Pharm. 2018 Aug 6;15(8):3032-3045. doi: 10.1021/acs.molpharmaceut.8b00076. Epub 2018 Jul 6.

A Glutamine-Rich Carrier Efficiently Delivers Anti-CD47 siRNA Driven by a "Glutamine Trap" To Inhibit Lung Cancer Cell Growth.

Author information

1
Department of Pharmacy, School of Pharmaceutical Sciences , Sun Yat-sen University , University Town, Guangzhou , P. R. China 510006.

Abstract

It is not efficient enough using the current approaches for tumor-selective drug delivery based on the EPR effect and ligand-receptor interactions, and they have largely failed to translate into the clinic. Therefore, it is urgent to explore an enhanced strategy for effective delivery of anticancer agents. Clinically, many cancers require large amounts of glutamine for their continued growth and survival, resulting in circulating glutamine extraction by the tumor being much greater than that for any organs, behaving as a "glutamine trap". In the present study, we sought to elucidate whether the glutamine-trap effect could be exploited to deliver therapeutic agents to selectively kill cancer cells. Here, a macromolecular glutamine analogue, glutamine-functionalized branched polyethylenimine (GPI), was constructed as the carrier to deliver anti-CD47 siRNA for the blockage of CD47 "don't eat me" signals on cancer cells. The GPI/siRNA glutamine-rich polyplexes exhibited remarkably high levels of cellular uptake by glutamine-dependent lung cancer cells, wild-type A549 cells (A549WT), and its cisplatin-resistant cells (A549DDP), specifically under glutamine-depleted conditions. It was noted that the glutamine transporter ASCT2 was highly expressed both on A549WT and A549DDP but with almost no expression in normal human lung fibroblasts cells. Inhibition of ASCT2 significantly prevented the internalization of GPI polyplexes. These findings raised the intriguing possibility that the glutamine-rich GPI polyplexes utilize the ASCT2 pathway to selectively facilitate their cellular uptake by cancer cells. GPI further delivered anti-CD47 siRNA efficiently both in vitro and in vivo to downregulate the intratumoral mRNA and protein expression levels of CD47. CD47 functions as a "don't eat me" signal and binds to the immunoreceptor SIRPĪ± inducing evasion of phagocytic clearance. GPI/anti-CD47 siRNA polyplexes achieved significant antitumor activities both on A549WT and A549DDP tumor-bearing nude mice. Notably, it had no adverse effect on CD47-expressing red blood cells and platelets, likely because of selective delivery. Therefore, the glutamine-rich carrier GPI driven by the glutamine-trap effect provides a promising new strategy for designing anticancer drug delivery systems.

KEYWORDS:

CD47; cancer immunotherapy; glutamine transporter ASCT2; glutamine trap; glutamine-dependent lung cancer

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center