Format

Send to

Choose Destination
J Strength Cond Res. 2018 Jun 8. doi: 10.1519/JSC.0000000000002660. [Epub ahead of print]

Activity of Shoulder Stabilizers and Prime Movers During an Unstable Overhead Press.

Author information

1
Department of Physical Therapy, University of New England Portland, Portland, Maine.

Abstract

Williams, MR Jr, Hendricks, DS, Dannen, MJ, Arnold, AM, and Lawrence, MA. Activity of shoulder stabilizers and prime movers during an unstable overhead press. J Strength Cond Res XX(X): 000-000, 2018-Overhead reaching is a common movement that relies heavily on muscles for dynamic stability. Stabilizer muscle activation increased during squatting and bench pressing with an unstable load, but the overhead press (OHP) has yet to be examined. The purpose of this study is to compare muscle activity of the shoulder stabilizers and prime movers and excursions of the center of pressure (CoP) during the OHP in 2 unstable and one stable conditions. Twelve men (aged 25.3 ± 2.7 years, mass: 91.5 ± 8.4 kg, height: 1.81 ± 0.06 m) pressed 50% of their 1 repetition maximum for 10 repetitions over 3 conditions: a straight stable barbell (SS), a straight unstable (SU) barbell with kettlebells suspend by elastic bands, and an unstable Earthquake (EU) bar with kettlebells suspended by elastic bands. Activity of the shoulder stabilizers and prime movers were measured via surface and indwelling electromyography. Center of pressure excursion of the right foot was also measured. A multivariate analysis was used to determine significant differences between conditions. Pressing with the EQ increased activation of the biceps brachii, erector spinae, latissimus dorsi, pectoralis major, rectus abdominus, rhomboids, and serratus anterior over the SS condition, whereas only the SU condition increased activation in the erector spinae and latissimus dorsi muscles. The EQ condition produced greater CoP excursion (35.3 ± 7.9% foot length) compared with the SU (28.0 ± 7.2% foot length) and SS (22.2 ± 6.3% foot length) conditions. Therefore, the EU condition may be an effective exercise to activate scapular stabilizers.

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center