Format

Send to

Choose Destination
EGEMS (Wash DC). 2018 Apr 13;6(1):3. doi: 10.5334/egems.199.

Evaluating Foundational Data Quality in the National Patient-Centered Clinical Research Network (PCORnet®).

Author information

1
Duke Clinical Research Institute, US.
2
Harvard Pilgrim Health Care Institute, US.
3
Cincinnati Children's Hospital Medical Center, US.

Abstract

Introduction:

Distributed research networks (DRNs) are critical components of the strategic roadmaps for the National Institutes of Health and the Food and Drug Administration as they work to move toward large-scale systems of evidence generation. The National Patient-Centered Clinical Research Network (PCORnet®) is one of the first DRNs to incorporate electronic health record data from multiple domains on a national scale. Before conducting analyses in a DRN, it is important to assess the quality and characteristics of the data.

Methods:

PCORnet's Coordinating Center is responsible for evaluating foundational data quality, or assessing fitness-for-use across a broad research portfolio, through a process called data curation. Data curation involves a set of analytic and querying activities to assess data quality coupled with maintenance of detailed documentation and ongoing communication with network partners. The first cycle of PCORnet data curation focused on six domains in the PCORnet common data model: demographics, diagnoses, encounters, enrollment, procedures, and vitals.

Results:

The data curation process led to improvements in foundational data quality. Notable improvements included the elimination of data model conformance errors; a decrease in implausible height, weight, and blood pressure values; an increase in the volume of diagnoses and procedures; and more complete data for key analytic variables. Based on the findings of the first cycle, we made modifications to the curation process to increase efficiencies and further reduce variation among data partners.

Discussion:

The iterative nature of the data curation process allows PCORnet to gradually increase the foundational level of data quality and reduce variability across the network. These activities help increase the transparency and reproducibility of analyses within PCORnet and can serve as a model for other DRNs.

KEYWORDS:

data quality; distributed research networks; electronic health records; patient-centered care; quality improvement

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center