A longitudinal model for functional connectivity networks using resting-state fMRI

Neuroimage. 2018 Sep:178:687-701. doi: 10.1016/j.neuroimage.2018.05.071. Epub 2018 Jun 4.

Abstract

Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex.

Keywords: Functional connectivity; Longitudinal; Temporal autocorrelation; fMRI.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aged
  • Aged, 80 and over
  • Aging / pathology
  • Aging / physiology
  • Alzheimer Disease / physiopathology
  • Brain / physiology*
  • Brain Mapping / methods*
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Longitudinal Studies
  • Magnetic Resonance Imaging / methods
  • Male
  • Middle Aged
  • Models, Neurological*
  • Nerve Net / physiology*
  • Rest / physiology