Send to

Choose Destination
J Exp Zool. 1985 Apr;234(1):87-96.

Effect of forskolin on the spontaneous maturation and cyclic AMP content of hamster oocyte-cumulus complexes.


Forskolin, a reversible stimulator of the catalytic subunit of adenylate cyclase, has been used to determine: whether an increase in hamster cumulus cell cyclic adenosine monophosphate (cAMP) results in an elevation of intraoocyte cAMP and an accompanying increase in the maintenance of meiotic arrest (%GV where GV is germinal vesicle) when heterologous coupling is maintained, whether the hamster oolemma possesses the catalytic subunit of adenylate cyclase in an amount adequate to stimulate sufficient cAMP synthesis to maintain arrest, and whether release from meiotic arrest is accompanied by a decrease in the content of intraoocyte cAMP. Intracellular cAMP was determined by RIA, functional metabolic coupling was assessed by determination of the fraction of radiolabeled uridine marker transferred from the cumulus mass to the oocyte, and meiotic stage was determined cytogenetically. While the %GV of both cumulus-enclosed (intact) and cumulus-free (denuded) oocytes was dose-dependent upon forskolin, that of intact oocytes was much more sensitive to the drug (intact: ID50 3.4 microM; denuded: ID50 65.0 microM, where ID50 is the dose of forskolin that inhibits the maturation of 50% of cultured oocytes). Forskolin stimulated a significant, dose-dependent increase in the amount of cAMP within the cumulus mass [(r) = 0.789, P less than 0.001)], the intact oocyte [(r) = 0.715, P less than 0.001], and the denuded oocyte [(r) = 0.673, P less than 0.01)]. The cAMP content of intact oocytes was significantly greater than that of denuded oocytes above 6.25 microM forskolin (25 microM forskolin: 9.28 +/- 1.01 vs. 3.98 +/- 0.15 fmol cAMP, intact and denuded oocytes, respectively; P less than 0.001, paired t test). A highly significant positive correlation was established between the amount of cAMP in groups of cumulus masses and that in the corresponding enclosed oocytes [(r) = 0.635, P less than 0.001]. The enhanced sensitivity of meiotic arrest in intact, as compared to denuded, oocytes was due to the presence of adherent cumulus cells but was not attributable to a significant increase in the cAMP content of intact oocytes (at 6.25 microM forskolin; %GV intact = 73.0 +/- 10.7, denuded = 20.3 +/- 7.4; fmol cAMP intact = 5.02 +/- 1.50; denuded = 4.63 +/- 0.81). The arresting action of forskolin on intact oocytes was transient and fully reversible, but release from arrest was not accompanied by a decrease in either intraoocyte cAMP or heterologous metabolic coupling.(ABSTRACT TRUNCATED AT 400 WORDS).

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center