Format

Send to

Choose Destination
Circulation. 2018 May 29;137(22):2393-2407. doi: 10.1161/CIRCULATIONAHA.117.033359.

Energetics of Blood Flow in Cardiovascular Disease: Concept and Clinical Implications of Adverse Energetics in Patients With a Fontan Circulation.

Author information

1
Department of Cardiothoracic Surgery (F.M.R., M.G.H.).
2
Leiden University Medical Center, The Netherlands. Department of Biomechanical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands (J.J.W.).
3
Department of Radiology (P.J.H.d.K., J.J.M.W.).
4
Departments of Cardiology and Anatomy and Embryology (M.R.M.J.).
5
Department of Pediatric Cardiology (N.A.B., A.A.W.R.).
6
Department of Pediatric Cardiology (N.A.B., A.A.W.R.) a.roest@lumc.nl.

Abstract

Visualization and quantification of the adverse effects of distorted blood flow are important emerging fields in cardiology. Abnormal blood flow patterns can be seen in various cardiovascular diseases and are associated with increased energy loss. These adverse energetics can be measured and quantified using 3-dimensional blood flow data, derived from computational fluid dynamics and 4-dimensional flow magnetic resonance imaging, and provide new, promising hemodynamic markers. In patients with palliated single-ventricular heart defects, the Fontan circulation passively directs systemic venous return to the pulmonary circulation in the absence of a functional subpulmonary ventricle. Therefore, the Fontan circulation is highly dependent on favorable flow and energetics, and minimal energy loss is of great importance. A focus on reducing energy loss led to the introduction of the total cavopulmonary connection (TCPC) as an alternative to the classical Fontan connection. Subsequently, many studies have investigated energy loss in the TCPC, and energy-saving geometric factors have been implemented in clinical care. Great advances have been made in computational fluid dynamics modeling and can now be done in 3-dimensional patient-specific models with increasingly accurate boundary conditions. Furthermore, the implementation of 4-dimensional flow magnetic resonance imaging is promising and can be of complementary value to these models. Recently, correlations between energy loss in the TCPC and cardiac parameters and exercise intolerance have been reported. Furthermore, efficiency of blood flow through the TCPC is highly variable, and inefficient blood flow is of clinical importance by reducing cardiac output and increasing central venous pressure, thereby increasing the risk of experiencing the well-known Fontan complications. Energy loss in the TCPC will be an important new hemodynamic parameter in addition to other well-known risk factors such as pulmonary vascular resistance and can possibly be improved by patient-specific surgical design. This article describes the theoretical background of mechanical energy of blood flow in the cardiovascular system and the methods of calculating energy loss, and it gives an overview of geometric factors associated with energy efficiency in the TCPC and its implications on clinical outcome. Furthermore, the role of 4-dimensional flow magnetic resonance imaging and areas of future research are discussed.

KEYWORDS:

Fontan procedure; computational fluid dynamics; dissipation; energetics; energy loss; four-dimensional flow magnetic resonance imaging; total cavopulmonary connection

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center