Send to

Choose Destination
Exp Cell Res. 1985 Jan;156(1):182-90.

Cleavage of a 135 kD cell surface glycoprotein correlates with loss of fibroblast adhesion to fibronectin.


We have previously described a group of three plasma membrane glycoproteins that are recognized by an adhesion-disrupting antiserum and that are involved in fibronectin-mediated BHK cell adhesion. A peculiar property of these molecules is their resistance to tryptic digestion. We have now extended this study in the attempt to identify the active component within this group of molecules. SR/BALB mouse fibroblasts, used in this work, expose at their surface only two trypsin-resistant glycoproteins, gp1 (150 K) and gp2 (135 K), that are recognized by the adhesion-disrupting anti-BHK serum. Controlled proteolysis of the cell surface in the presence of a reducing agent results in the loss of cell adhesion to fibronectin-coated substratum. gp2 is selectively cleaved under these conditions. Moreover, cells treated with trypsin and reducing agent can no longer adsorb the adhesion-relevant antibodies from the anti-BHK serum. These data indicate that gp2 plays a critical role in the adhesion of SR/BALB fibroblasts to fibronectin-coated substratum, and that disulfide bonds are important in the conformation and function of this molecule.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center