Format

Send to

Choose Destination
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017 Apr 15;31(4):473-480. doi: 10.7507/1002-1892.201611021.

[Comparison of biological characteristics between bone marrow mesenchymal stem cells and anterior cruciate ligament derived mesenchymal stem cells in rats].

[Article in Chinese; Abstract available in Chinese from the publisher]

Author information

1
Medical School of Southeast University, Nanjing Jiangsu, 210009, P.R.China.
2
Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing Jiangsu, 210009, P.R.China.
3
Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing Jiangsu, 210009, P.R.China.ljseueducn@126.com.

Abstract

in English, Chinese

Objective:

To compare the biological characteristics of bone marrow mesenchymal stem cells (BMSCs) and anterior cruciate ligament derived mesenchymal stem cells (ACL-MSCs) from rats in vitro.

Methods:

Ten male SPF-level BN rats, weighing 200-220 g, were selected to obtain anterior cruciate ligaments and bone marrows, and ACL-MSCs and BMSCs were isolated for passage culture respectively under sterile condition. The cell morphology was observed, and the cells at passage 3 were used to detect the surface markers of CD34, CD45, CD90, and CD29 by flow cytometry, the ability of cell proliferation by cell counting kit 8 (CCK-8), and colony formation ability by clone forming test. The mRNA levels of differentiation related genes [alkaline phosphatas (ALP), bone gamma-carboxyglutamate protein, runt related transcription factor 2, bone morphogenetic protein 2 (BMP-2), secreted phosphoprotein 1 (Spp1), collagen type II α1 (Col2α1), Aggrecan (Acan), Sox9, peroxisome proliferator activated receptor γ2 (PPARγ2), and CCAAT-enhancer-binding protein-α] were also determined by real-time fluorescent quantitative PCR.

Results:

BMSCs and ACL-MSCs had similar morphology, adherent cells displaying long fusiform. The immunoprofile of ACL-MSCs and BMSCs at passage 3 was positive for CD29 and CD90 and was negative for CD45 and CD34. The absorbance ( A) value of ACL-MSCs (1.11±0.08) was significantly higher than that of BMSCs (0.78±0.05) ( t=3.599, P=0.023); the number of colonies of ACL-MSCs [(53.00±5.51)/hole] was significantly more than that of BMSCs [(30.67±4.84)/hole] ( t=3.045, P=0.038). The results of toluidine blue staining, alizarin red staining, and oil red O staining were positive in BMSCs and ACL-MSCs at 21 days after osteogenic, chondrogenic, and adipogenic induction. The mRNA expressions of BMP-2, Spp1, Col2α1, Acan, Sox9, and PPARγ2 in ACL-MSCs were significantly higher than those in BMSCs ( P<0.01).

Conclusion:

The proliferation potential of ACL-MSCs is greater than that of BMSCs, and the former is apt to differentiate into chondrocytes. ACL-MSCs are promising cells to promote tendon-bone healing.

KEYWORDS:

Bone marrow mesenchymal stem cells; anterior cruciate ligament derived mesenchymal stem cells; proliferation and differentiation; rat

PMID:
29798615
DOI:
10.7507/1002-1892.201611021
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center