Format

Send to

Choose Destination
Mol Nutr Food Res. 2018 May 24:e1800129. doi: 10.1002/mnfr.201800129. [Epub ahead of print]

Obesity-Associated Diseases Biomarkers Are Differently Modulated in Lean and Obese Individuals and Inversely Correlated to Plasma Polyphenolic Metabolites After 6 Weeks of Mango (Mangifera indica L.) Consumption.

Author information

1
Department of Nutrition and Food Science, Texas A&M University, College Station, 77843, TX, USA.

Abstract

SCOPE:

Mangos are a rich source of gallotannin-derived polyphenols that may exert anti-inflammatory effects relevant to obesity-related chronic diseases. This randomized human clinical study investigated the influence of daily mango supplementation for 6 weeks on inflammation and metabolic functions in lean and obese individuals.

METHODS AND RESULTS:

Lean (n = 12, body mass index [BMI] 18-26.2 kg m-2 ) and obese (n = 9, BMI >28.9 kg m-2 ) participants, aged 18-65 years received daily 400 g of mango pulp for 6 weeks. Inflammatory cytokines, metabolic hormones, and lipid profiles were examined in plasma before and after 6 weeks. In lean participants, systolic blood pressure was lowered by 4 mmHg after 6 weeks. In obese participants, hemoglobin A1c (HbA1c) and plasminogen activator inhibitor-1 (PAI-1) were reduced by 18% and 20%, respectively. Obese participants showed decreased plasma concentrations (area under the curve [AUC] 0-8h ) of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1). Correlation analysis indicates that the beneficial effects of mango supplementation on pro-inflammatory cytokines, PAI-1 and HbA1c, are associated with systemic exposure to polyphenolic metabolites.

CONCLUSIONS:

Mango supplementation improves the plasma levels of pro-inflammatory cytokines and metabolic hormones in obese participants. There is a crucial need to investigate the role of lowered polyphenolic absorption in obese individuals on their efficacy in reducing biomarkers for inflammation and other risk factors for chronic diseases.

KEYWORDS:

clinical study; gallotannin derivatives; inflammation; metabolic functions; obesity

PMID:
29797702
DOI:
10.1002/mnfr.201800129

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center