Format

Send to

Choose Destination
AJNR Am J Neuroradiol. 2018 Jul;39(7):1310-1315. doi: 10.3174/ajnr.A5684. Epub 2018 May 24.

Abnormal Blood Oxygen Level-Dependent Fluctuations in Focal Cortical Dysplasia and the Perilesional Zone: Initial Findings.

Author information

1
From the Department of Radiology and Nuclear Medicine (L.G., P.A.M.H., R.M.H.B., J.F.A.J., W.H.B.).
2
School for Mental Health and Neuroscience (P.A.M.H., J.F.A.J., W.H.B.), Maastricht University Medical Center, Maastricht, the Netherlands.
3
Department of Electrical Engineering (R.M.H.B.), Eindhoven University of Technology, Eindhoven, the Netherlands.
4
From the Department of Radiology and Nuclear Medicine (L.G., P.A.M.H., R.M.H.B., J.F.A.J., W.H.B.) w.backes@mumc.nl.

Abstract

BACKGROUND AND PURPOSE:

Focal cortical dysplasia is a common cause of intractable epilepsy for which neurosurgery is an option. Delineations of a focal cortical dysplasia lesion on structural brain images may not necessarily reflect the functional borders of normal tissue. Our objective was to determine whether abnormalities in spontaneous blood oxygen level-dependent fluctuations arise in focal cortical dysplasia lesions and proximal regions.

MATERIALS AND METHODS:

Fourteen patients with focal cortical dysplasia-related epilepsy and 16 healthy controls underwent structural and resting-state functional MR imaging. Three known blood oxygen level-dependent measures were determined, including the fractional amplitude of low-frequency fluctuations, regional homogeneity, and wavelet entropy. These measures were evaluated in the lesion and perilesional zone and normalized to the contralateral cortex of patients with focal cortical dysplasia and healthy controls.

RESULTS:

Patients showed significantly decreased fractional amplitude of low-frequency fluctuations and increased wavelet entropy in the focal cortical dysplasia lesion and the perilesional zone (≤2 cm) relative to the contralateral homotopic cortex and the same regions in healthy controls. Regional homogeneity was significantly increased in the focal cortical dysplasia lesion compared with the contralateral homotopic cortex and healthy controls.

CONCLUSIONS:

Abnormalities in spontaneous blood oxygen level-dependent fluctuations were seen up to 2 cm distant from the radiologically visible boundary. It was demonstrated that functional boundaries go beyond structural boundaries of focal cortical dysplasia lesions. Validation is required to reveal whether this information is valuable for surgical planning and outcome evaluation of focal cortical dysplasia lesions and comparing current results with electrophysiologic analysis.

PMID:
29794237
DOI:
10.3174/ajnr.A5684
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center