Scopulibacillus cellulosilyticus sp. nov., a cellulose-degrading bacterium isolated from tea

Antonie Van Leeuwenhoek. 2018 Nov;111(11):2087-2094. doi: 10.1007/s10482-018-1101-1. Epub 2018 May 22.

Abstract

A Gram-stain positive, aerobic, non-motile, endospore-forming and rod-shaped strain (THG-NT9T) was isolated from a green tea sample. Growth occurred at 20-45 °C (optimum 28-35 °C), at pH 6.0-8.0 (optimum 7.0) and at 0-2.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-NT9T were identified as Scopulibacillus daqui DSM 28236T (98.6%), Scopulibacillus darangshiensis DSM 19377T (97.4%), Pullulanibacillus pueri CGMCC 1.12777T (96.7%) and Pullulanibacillus camelliae CGMCC 1.15371T (96.3%). The DNA G + C content of strain THG-NT9T was determined to be 47.5 mol %. DNA-DNA hybridization values between strain THG-NT9T and S. daqui DSM 28236T, S. darangshiensis DSM 19377T, P. pueri CGMCC 1.12777T, P. camelliae CGMCC 1.15371T and Pullulanibacillus naganoensis DSM 10191T were 41.3 ± 0.1 (39.4 ± 0.4% reciprocal analysis), 39.1 ± 0.1 (37.3 ± 0.1%), 21.4 ± 0.7 (20.1 ± 0.3%), 20.7 ± 0.1 (20.1 ± 0.4%) and 12.1 ± 0.2% (8.3 ± 0.2%). The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unidentified lipids. The quinone was identified as MK-7. The major fatty acids were C18:3 ω7c, iso-C15:0, iso-C16:0, iso-C17:0 and anteiso-C17:0. The cell wall type was determined to be A1γ peptidoglycan with meso-diaminopimelic acid as the diagnostic diamino acid plus alanine and glutamic acid and glucose as the cell wall sugar. On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA-DNA hybridization data, strain THG-NT9T represents a novel species of the genus Scopulibacillus, for which the name Scopulibacillus cellulosilyticus sp. nov. is proposed. The type strain is THG-NT9T (= KCTC 33918T = CGMCC 1.16305T).

Keywords: 16S rRNA gene; Camellia sinensis; Phenotypic characteristics; Scopulibacillus cellulosilyticus sp. nov.

MeSH terms

  • Bacteria / classification
  • Bacteria / genetics
  • Bacteria / metabolism*
  • Cellulose / metabolism*
  • Phenotype
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Tea / microbiology*

Substances

  • RNA, Ribosomal, 16S
  • Tea
  • Cellulose