Format

Send to

Choose Destination
Nano Lett. 2018 Jun 13;18(6):3523-3529. doi: 10.1021/acs.nanolett.8b00583. Epub 2018 May 22.

Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe2 Single Crystals and Their Thickness-Dependent Electronic Properties.

Author information

1
Department of Applied Physics, School of Physics and Electronics , Hunan University , Changsha 410082 , China.
2
Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States.

Abstract

The recent discovery of topological semimetals has stimulated extensive research interest due to their unique electronic properties and novel transport properties related to a chiral anomaly. However, the studies to date are largely limited to bulk crystals and exfoliated flakes. Here, we report the controllable synthesis of ultrathin two-dimensional (2D) platinum telluride (PtTe2) nanosheets with tunable thickness and investigate the thickness-dependent electronic properties. We show that PtTe2 nanosheets can be readily grown, using a chemical vapor deposition approach, with a hexagonal or triangular geometry and a lateral dimension of up to 80 μm, and the thickness of the nanosheets can be systematically tailored from over 20 to 1.8 nm by reducing the growth temperature or increasing the flow rate of the carrier gas. X-ray-diffraction, transmission-electron microscopy, and electron-diffraction studies confirm that the resulting 2D nanosheets are high-quality single crystals. Raman spectroscopic studies show characteristics Eg and A1g vibration modes at ∼109 and ∼155 cm-1, with a systematic red shift with increasing nanosheet thickness. Electrical transport studies show the 2D PtTe2 nanosheets display an excellent conductivity up to 2.5 × 106 S m-1 and show strong thickness-tunable electrical properties, with both the conductivity and its temperature dependence varying considerably with the thickness. Moreover, 2D PtTe2 nanosheets show an extraordinary breakdown current density up to 5.7 × 107 A/cm2, the highest breakdown current density achieved in 2D metallic transition-metal dichalcogenides to date.

KEYWORDS:

2D materials; Chemical vapor deposition; PtTe2 nanosheets; breakdown current density; electrical conductivity

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center