Format

Send to

Choose Destination
Curr Opin Plant Biol. 2018 Oct;45(Pt A):18-25. doi: 10.1016/j.pbi.2018.04.018. Epub 2018 May 15.

Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase.

Author information

1
Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
2
Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva 4, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland. Electronic address: roman.ulm@unige.ch.

Abstract

Plants have evolved specific photoreceptors that capture informational cues from sunlight. The phytochrome, cryptochrome, and UVR8 photoreceptors perceive red/far-red, blue/UV-A, and UV-B light, respectively, and control overlapping photomorphogenic responses important for plant growth and development. A major repressor of such photomorphogenic responses is the E3 ubiquitin ligase formed by CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) proteins, which acts by regulating the stability of photomorphogenesis-promoting transcription factors. The direct interaction of light-activated photoreceptors with the COP1/SPA complex represses its activity via nuclear exclusion of COP1, disruption of the COP1-SPA interaction, and/or SPA protein degradation. This process enables plants to integrate different light signals at the level of the COP1/SPA complex to enact appropriate photomorphogenic responses according to the light environment.

PMID:
29775763
DOI:
10.1016/j.pbi.2018.04.018
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center