Format

Send to

Choose Destination
Hepatology. 2018 Dec;68(6):2380-2404. doi: 10.1002/hep.30093. Epub 2018 Nov 13.

High Mobility Group Box-1 Drives Fibrosis Progression Signaling via the Receptor for Advanced Glycation End Products in Mice.

Author information

1
Department of Pathology, University of Illinois at Chicago, Chicago, IL.
2
Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
3
MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
4
Division of Digestive Diseases, Mount Sinai Beth Israel Medical Center, New York, NY.
5
Department of Pathology, New York University Langone Medical Center, New York, NY.
6
Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL.

Abstract

High-mobility group box-1 (HMGB1) is a damage-associated molecular pattern (DAMP) increased in response to liver injury. Because HMGB1 is a ligand for the receptor for advanced glycation endproducts (RAGE), we hypothesized that induction of HMGB1 could participate in the pathogenesis of liver fibrosis though RAGE cell-specific signaling mechanisms. Liver HMGB1 protein expression correlated with fibrosis stage in patients with chronic hepatitis C virus (HCV) infection, primary biliary cirrhosis (PBC), or alcoholic steatohepatitis (ASH). Hepatic HMGB1 protein expression and secretion increased in five mouse models of liver fibrosis attributed to drug-induced liver injury (DILI), cholestasis, ASH, or nonalcoholic steatohepatitis (NASH). HMGB1 was up-regulated and secreted mostly by hepatocytes and Kupffer cells (KCs) following CCl4 treatment. Neutralization of HMGB1 protected, whereas injection of recombinant HMGB1 promoted liver fibrosis. Hmgb1 ablation in hepatocytes (Hmgb1ΔHep ) or in myeloid cells (Hmgb1ΔMye ) partially protected, whereas ablation in both (Hmgb1ΔHepΔMye ) prevented liver fibrosis in vivo. Coculture with hepatocytes or KCs from CCl4 -injected wild-type (WT) mice up-regulated Collagen type I production by hepatic stellate cells (HSCs); yet, coculture with hepatocytes from CCl4 -injected Hmgb1ΔHep or with KCs from CCl4 -injected Hmgb1ΔMye mice partially blunted this effect. Rage ablation in HSCs (RageΔHSC ) and RAGE neutralization prevented liver fibrosis. Last, we identified that HMGB1 stimulated HSC migration and signaled through RAGE to up-regulate Collagen type I expression by activating the phosphorylated mitogen-activated protein kinase kinase (pMEK)1/2, phosphorylated extracellular signal-regulated kinase (pERK)1/2 and pcJun signaling pathway. Conclusion: Hepatocyte and KC-derived HMGB1 participates in the pathogenesis of liver fibrosis by signaling through RAGE in HSCs to activate the pMEK1/2, pERK1/2 and pcJun pathway and increase Collagen type I deposition.

PMID:
29774570
PMCID:
PMC6240507
[Available on 2019-12-01]
DOI:
10.1002/hep.30093
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center