Format

Send to

Choose Destination
Sci Rep. 2018 May 16;8(1):7699. doi: 10.1038/s41598-018-25972-x.

Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria.

Author information

1
Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
2
Sorbonne Université, Museum National d'Histoire Naturelle, CNRS, Institut de Recherche pour le Développement, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, 75252, Paris, Cedex 05, France.
3
Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), CNRS-UMR 7086, Université Paris 7 Denis Diderot, 15 rue Jean de Baïf, 75205, Paris, cedex 13, France.
4
Centre d'Élaboration de Matériaux et d'Etudes Structurales (CEMES), CNRS-UPR 8011, Université de Toulouse, 29 rue Jeanne Marvig, 31055, Toulouse, France.
5
Nanobactérie, Campus de l'Université d'Orsay, Batiment 201 rue Henri Becquerel, 91440, Bures-sur-Yvette, France.
6
Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83, Hudding, Sweden.
7
Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75252, Paris, Cedex 05, France. thibaud.coradin@upmc.fr.

Abstract

Understanding the biological processes enabling magnetotactic bacteria to maintain oriented chains of magnetic iron-bearing nanoparticles called magnetosomes is a major challenge. The study aimed to constrain the role of an external applied magnetic field on the alignment of magnetosome chains in Magnetospirillum magneticum AMB-1 magnetotactic bacteria immobilized within a hydrated silica matrix. A deviation of the chain orientation was evidenced, without significant impact on cell viability, which was preserved after the field was turned-off. Transmission electron microscopy showed that the crystallographic orientation of the nanoparticles within the chains were preserved. Off-axis electron holography evidenced that the change in magnetosome orientation was accompanied by a shift from parallel to anti-parallel interactions between individual nanocrystals. The field-induced destructuration of the chain occurs according to two possible mechanisms: (i) each magnetosome responds individually and reorients in the magnetic field direction and/or (ii) short magnetosome chains deviate in the magnetic field direction. This work enlightens the strong dynamic character of the magnetosome assembly and widens the potentialities of magnetotactic bacteria in bionanotechnology.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center