Send to

Choose Destination
Exp Physiol. 2018 Jul;103(7):985-994. doi: 10.1113/EP086844.

Functional high-intensity exercise training ameliorates insulin resistance and cardiometabolic risk factors in type 2 diabetes.

Author information

Department of Pathobiology, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
Department of Biomedical Sciences, Kent State University, Kent, OH, USA.
Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA.
Department of Cardiology, Cleveland Clinic, Cleveland, OH, USA.
Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, USA.



What is the central question of this study? Does short-duration, high-intensity exercise training that combines functional aerobic and resistance exercises into training sessions lasting 8-20 min benefit individuals with type 2 diabetes? What is the main finding and its importance? Functional high-intensity training improves insulin sensitivity and reduces cardiometabolic risk in individuals with type 2 diabetes. This type of exercise training may be an effective exercise mode for managing type 2 diabetes. The increase in insulin sensitivity addresses a key defect in type 2 diabetes.


Functional high-intensity training (F-HIT) is a novel fitness paradigm that integrates simultaneous aerobic and resistance training in sets of constantly varied movements, based on real-world situational exercises, performed at high-intensity in workouts that range from ∼8 to 20 min per session. We hypothesized that F-HIT would be an effective exercise mode for reducing insulin resistance in type 2 diabetes (T2D). We recruited 13 overweight/obese adults (5 males, 8 females; 53 ± 7 years; BMI 34.5 ± 3.6 kg m-2 , means ± SD) with T2D to participate in a 6-week (3 days week-1 ) supervised F-HIT programme. An oral glucose tolerance test was used to derive measures of insulin sensitivity. F-HIT significantly reduced fat mass (43.8 ± 83.8 vs. 41.6 ± 7.9 kg; P < 0.01), diastolic blood pressure (80.2 ± 7.1 vs. 74.5 ± 5.8; P < 0.01), blood lipids (triglyceride and VLDL, both P < 0.05) and metabolic syndrome z-score (6.4 ± 4.5 vs. -0.2 ± 5.2 AU; P < 0.001), and increased basal fat oxidation (0.08 ± 0.03 vs. 0.10 ± 0.04 g min-1 ; P = 0.05), and high molecular mass adiponectin (214.4 ± 88.9 vs. 288.8 ± 127.4 ng mL-1 ; P < 0.01). Importantly, F-HIT also increased insulin sensitivity (0.037 ± 0.010 vs. 0.042 ± 0.010 AU; P < 0.05). Increases in high molecular mass adiponectin and basal fat oxidation correlated with the change in insulin sensitivity (ρ, 0.75, P < 0.05 and ρ, 0.81, P < 0.01, respectively). Compliance with the training programme was >95% and no injuries or adverse events were reported. These data suggest that F-HIT may be an effective exercise mode for managing T2D. The increase in insulin sensitivity addresses a key defect in T2D and is consistent with improvements observed after more traditional aerobic exercise programmes in overweight/obese adults with T2D.


CrossFit™; diabetes; insulin resistance; insulin sensitivity; obesity

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center