Format

Send to

Choose Destination
Semin Cell Dev Biol. 2018 May 21. pii: S1084-9521(17)30194-5. doi: 10.1016/j.semcdb.2018.05.010. [Epub ahead of print]

The true colours of the flatworm: Mechanisms of pigment biosynthesis and pigment cell lineage development in planarians.

Author information

1
Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 0A4, Canada.
2
Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 0A4, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 0A4, Canada. Electronic address: bret.pearson@sickkids.ca.

Abstract

Pigment cells serve a variety of important uses across the animal kingdom, and in many species can change and regenerate throughout the lifetime of the organism. The functions of these cells, as well as their origins in both embryonic development and adult regeneration, are not fully understood. Here, we review advances in the study of pigment cells in the freshwater planarian, a model system for stem cell biology and regeneration. Freshwater planarians produce at least three pigment types to generate brown eye and body colouration: melanin, porphyrin, and ommochrome. The body pigments of planarians are produced and contained by a specialized, highly dendritic cell type located in the subepidermal parenchymal space. This cell type is specifically ablated following intense light exposure, a characteristic which has been exploited to discover the gene expression and regeneration of planarian pigment cells. Regenerating pigment cells progress through an immature state marked by upregulation of pigment synthesis genes before differentiating into mature pigment cells; these two states are dynamically regulated in homeostasis to maintain constant body pigmentation. The transcription factors Albino, FoxF-1, and Ets-1, as well as an FGFR-like molecule, are required for proper maintenance of the pigment lineage in both regeneration and homeostasis. These discoveries set the stage for research into external signals that regulate the pigment lineage, as well as possible functions for pigment cells in planarians, including the extra-ocular light response. These insights will address outstanding questions about the evolutionarily-conserved biology of pigment cells.

KEYWORDS:

Lineage; Neoblasts; Ommochrome; Pigment cells; Planarian; Stem cells

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center