Format

Send to

Choose Destination
Sensors (Basel). 2018 May 10;18(5). pii: E1504. doi: 10.3390/s18051504.

An RFID Indoor Positioning Algorithm Based on Support Vector Regression.

Xu H1,2, Wu M3,4, Li P5,6, Zhu F7,8, Wang R9,10.

Author information

1
School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. xuhe@njupt.edu.cn.
2
Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China. xuhe@njupt.edu.cn.
3
School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. 1217043221@njupt.edu.cn.
4
Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China. 1217043221@njupt.edu.cn.
5
School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. lipeng@njupt.edu.cn.
6
Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China. lipeng@njupt.edu.cn.
7
School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. zhufeng@njupt.edu.cn.
8
Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China. zhufeng@njupt.edu.cn.
9
School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China. wangrc@njupt.edu.cn.
10
Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210003, China. wangrc@njupt.edu.cn.

Abstract

Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective.

KEYWORDS:

LANDMARC; RFID; indoor positioning

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center