Format

Send to

Choose Destination
Curr Opin Plant Biol. 2018 Aug;44:145-154. doi: 10.1016/j.pbi.2018.04.009. Epub 2018 May 5.

Beneficial associations between Brassicaceae plants and fungal endophytes under nutrient-limiting conditions: evolutionary origins and host-symbiont molecular mechanisms.

Author information

1
Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. Electronic address: hiruma@bs.naist.jp.
2
Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan; Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO) , 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan.
3
PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan.

Abstract

Brassicaceae plants have lost symbiotic interactions with mutualistic mycorrhizal fungi, but, nonmycorrhizal Brassicaceae associate with diverse taxonomic groups of mutualistic root-endophytic fungi. Distantly related fungal endophytes of Brassicaceae plants transfer phosphorus to the hosts and promote plant growth, thereby suggesting that the beneficial function was independently acquired via convergent evolution. These beneficial interactions appear tightly regulated by the tryptophan-derived secondary metabolite pathway, which specifically developed in Brassicaceae. Importantly, phosphate availability and types of colonizing microbes appear to influence the metabolite pathway. Thus, endophytes of Brassicaceae may have evolved to adapt to the Brassicaceae-specific traits. Future comparative functional analyses among well-defined endophytic fungi and their relatives with distinct life strategies and host plants will help understand the mechanisms that establish and maintain beneficial interactions.

PMID:
29738938
DOI:
10.1016/j.pbi.2018.04.009

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center