[Effects of precipitation exclusion on fine-root biomass and functional traits of Cunninghamia lanceolata seedlings]

Ying Yong Sheng Tai Xue Bao. 2016 Sep;27(9):2807-2814. doi: 10.13287/j.1001-9332.201609.023.
[Article in Chinese]

Abstract

A precipitation exclusion experiment was set up in Cunninghamia lanceolata seedling plots in Chenda State-Owned Forest Farm, Sanming, Fujian Province, which included 50% precipi-tation reduction and ambient precipitation (control). Using soil coring and in-growth core me-thods, changes in fine-root functional traits of C. lanceolata seedlings, including fine-root biomass, morphology, stoichiometry, specific root respiration, and nonstructural carbohydrates, were exa-mined after 1 year's precipitation exclusion. The results showed that precipitation exclusion significantly decreased biomass of 0-1 mm diameter roots but had no effect on 1-2 mm diameter roots. However, adaptive morphological changes occurred in the precipitation exclusion treatment. The specific root length (SRL) of the 0-1 and 1-2 mm diameter roots increased by 21.1% and 30.5%, respectively, and root tissue density (RTD) significantly decreased and specific root surface area (SRA) significantly increased in the 0-1 mm diameter roots. Precipitation exclusion led to increase in nitrogen concentration in fine roots, but the absorption capacity for phosphorus was impeded, resulting in increased root N:P, which implied a nutritional imbalance in fine roots. Precipitation exclusion did not significantly change fine root specific respiration rate and nonstructural carbohydrate (NSC) content. However, the soluble sugar content and the ratio of soluble sugar to starch were significantly decreased, and the starch content was increased by 33.3% in the 1-2 mm diameter roots, indicating an adaptation response of C. lanceolata seedlings to reduced precipitation by increasing the storage of nonstructural carbohydrate in fine roots.

在福建三明陈大国有采育场杉木幼苗小区,采用土钻法和内生长环法,以非隔离降水为对照,对隔离降水50%处理一年的杉木幼苗细根生物量和形态、化学计量学、比根呼吸、非结构性碳水化合物等功能特征进行研究.结果表明: 与对照相比,隔离降水处理0~1 mm细根生物量显著降低,1~2 mm细根生物量差异不显著;隔离降水导致细根在形态上发生了适应性变化,0~1 mm和1~2 mm细根比根长分别增加21.1%和30.5%,0~1 mm细根组织密度显著降低,而比表面积显著增加.隔离降水导致细根氮的富集,但限制了对磷的吸收,氮磷比升高,导致营养失衡;隔离降水没有显著改变细根比根呼吸和非结构性碳水化合物含量,但导致1~2 mm细根可溶性糖、糖淀比显著降低,淀粉含量增加33.3%,表明其通过增加非结构性碳水化合物贮存比例以应对降水减少.

Keywords: fine root; nonstructural carbohydrate; precipitation exclusion; specific root respiration.

MeSH terms

  • Acclimatization
  • Biomass
  • Carbohydrates / analysis
  • China
  • Cunninghamia / growth & development*
  • Forests
  • Nitrogen
  • Plant Roots / growth & development*
  • Rain*
  • Seedlings / growth & development
  • Soil

Substances

  • Carbohydrates
  • Soil
  • Nitrogen