Format

Send to

Choose Destination
Exp Neurol. 2018 Aug;306:64-75. doi: 10.1016/j.expneurol.2018.04.014. Epub 2018 Apr 30.

TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models.

Author information

1
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany; Berlin Institute of Health, Anna-Louisa-Karsch 2, 10178 Berlin, Germany. Electronic address: wolfgang.boehmerle@charite.de.
2
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany; Berlin Institute of Health, Anna-Louisa-Karsch 2, 10178 Berlin, Germany.
3
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Center for Stroke Resarch Berlin, Berlin, Germany.
4
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany; Berlin Institute of Health, Anna-Louisa-Karsch 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Center for Stroke Resarch Berlin, Berlin, Germany.
5
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Klinik und Hochschulambulanz für Neurologie, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Cluster of Excellence NeuroCure, Berlin, Germany; Berlin Institute of Health, Anna-Louisa-Karsch 2, 10178 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Center for Stroke Resarch Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; DZHK (German Center for Cardiovascular Research), Berlin, Germany.

Abstract

Paclitaxel is a cytotoxic drug which frequently causes sensory peripheral neuropathy in patients. Increasing evidence suggests that altered intracellular calcium (Ca2+) signals play an important role in the pathogenesis of this condition. In the present study, we examined the interplay between Ca2+ release channels in the endoplasmic reticulum (ER) and Ca2+ permeable channels in the plasma membrane in the context of paclitaxel mediated neurotoxicity. We observed that in small to medium size dorsal root ganglia neurons (DRGN) the inositol-trisphosphate receptor (InsP3R) type 1 was often concentrated in the periphery of cells, which is in contrast to homogenous ER distribution. G protein-coupled designer receptors were used to further elucidate phosphoinositide mediated Ca2+ signaling: This approach showed strong InsP3 mediated Ca2+ signals close to the plasma membrane, which can be amplified by Ca2+ entry through TRPV4 channels. In addition, our results support a physical interaction and partial colocalization of InsP3R1 and TRPV4 channels. In the context of paclitaxel-induced neurotoxicity, blocking Ca2+ influx through TRPV4 channels reduced cell death in cultured DRGN. Pretreatment of mice with the pharmacological TRPV4 inhibitor HC067047 prior to paclitaxel injections prevented electrophysiological and behavioral changes associated with paclitaxel-induced neuropathy. In summary, these results underline the relevance of TRPV4 signaling for the pathogenesis of paclitaxel-induced neuropathy and suggest novel preventive strategies.

KEYWORDS:

Calcium; Inositol-trisphosphate receptor; Neuropathy; Paclitaxel; TRPV4

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center