Synthesis, Structural Characterization, and Luminescence Switching of Diarylethene-Conjugated Ru(II)-Terpyridine Complexes by trans-cis Photoisomerization: Experimental and DFT/TD-DFT Investigation

Inorg Chem. 2018 May 21;57(10):5743-5753. doi: 10.1021/acs.inorgchem.7b03096. Epub 2018 Apr 27.

Abstract

We synthesized and thoroughly characterized a new family of diarylethene-conjugated mononuclear Ru(II)-terpyridine complexes and investigated in detail their photophysical, electrochemical, and spectroelectrochemical behaviors. Interestingly, the compounds show moderately strong room-temperature luminescence predominantly from their 3MLCT state with luminescence lifetime varying between 8.43 and 22.82 ns. Because of the presence of diarylethene unit, all the monometallic complexes underwent trans-to-cis photoisomerization upon interaction with UV light with substantial changes in their absorption and luminescence spectra. Reverting back from the cis to the trans form is also made possible upon treatment with visible light or by heat. Trans-to-cis isomerization leads to almost complete quenching of luminescence, while backward cis-to-trans isomerization gives rise to restoration of the original luminescence for all the complexes. Thus, "on-off" and "off-on" emission switching was made possible upon successive interaction of the complexes with UV and visible light. Computational investigation involving density functional theory (DFT) and time-dependent DFT methods was done for proper assignment of the experimental absorption and emission spectral bands in the complexes. Finally, experimentally observed trend on the absorption and emission spectral behaviors of the complexes upon photoisomerization was also compared with the calculated results.