Send to

Choose Destination
Phys Rev Lett. 2018 Mar 30;120(13):133601. doi: 10.1103/PhysRevLett.120.133601.

Theory of a Quantum Scanning Microscope for Cold Atoms.

Author information

Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria and Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria.


We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

Supplemental Content

Full text links

Icon for American Physical Society
Loading ...
Support Center