Format

Send to

Choose Destination
Magn Reson Med. 2018 Dec;80(6):2702-2716. doi: 10.1002/mrm.27216. Epub 2018 Apr 24.

Quantitative susceptibility mapping of articular cartilage: Ex vivo findings at multiple orientations and following different degradation treatments.

Author information

1
Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
2
Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
3
Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.
4
Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
5
Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
6
Department of Medical Physics & Biomedical Engineering, University College London (UCL), London, United Kingdom.

Abstract

PURPOSE:

We investigated the feasibility of quantitative susceptibility mapping (QSM) for assessing degradation of articular cartilage by measuring ex vivo bovine cartilage samples subjected to different degradative treatments. Specimens were scanned at several orientations to study if degradation affects the susceptibility anisotropy. T2*-mapping, histological stainings, and polarized light microscopy were used as reference methods. Additionally, simulations of susceptibility in layered geometry were performed.

METHODS:

Samples (n = 9) were harvested from the patellae of skeletally mature bovines. Three specimens served as controls, and the rest were artificially degraded. MRI was performed at 9.4T using a 3D gradient echo sequence. QSM and T2* images and depth profiles through the centers of the samples were compared with each other and the histological findings. A planar isotropic model with depth-wise susceptibility variation was used in the simulations.

RESULTS:

A strong diamagnetic contrast was seen in the deep and calcified layers of cartilage, while T2* maps reflected the typical trilaminar structure of the collagen network. Anisotropy of susceptibility in cartilage was observed and was found to differ from the T2* anisotropy. Slight changes were observed in QSM and T2* following the degradative treatments. In simulations, anisotropy was observed.

CONCLUSIONS:

The results suggest that QSM is not sensitive to cartilage proteoglycan content, but shows sensitivity to the amount of calcification and to the integrity of the collagen network, providing potential for assessing osteoarthritis. The simulations suggested that the anisotropy of susceptibility might be partially explained by the layered geometry of susceptibility in cartilage.

KEYWORDS:

MRI; cartilage; collagen matrix; osteoarthritis; quantitative susceptibility mapping

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center