Format

Send to

Choose Destination
Environ Res. 2018 Aug;165:110-117. doi: 10.1016/j.envres.2018.03.039. Epub 2018 Apr 21.

Lung function association with outdoor temperature and relative humidity and its interaction with air pollution in the elderly.

Author information

1
Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA; Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France. Electronic address: johanna.lepeule@univ-grenoble-alpes.fr.
2
Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
3
Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, United Kingdom.
4
Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
5
VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
6
Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Abstract

While the effects of weather variability on cardio-respiratory mortality are well described, research examining the effects on morbidity, especially for vulnerable populations, is warranted. We investigated the associations between lung function and outdoor temperature (T in Celsius degrees (°C)) and relative humidity (RH), in a cohort of elderly men, the Normative Aging Study. Our study included 1103 participants whose forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and weather exposures were assessed one to five times during the period 1995-2011 (i.e. 3162 observations). Temperature and relative humidity were measured at one location 4 h to 7 days before lung function tests. We used linear mixed-effects models to examine the associations with outdoor T and RH. A 5-degree increase in the 3-day moving average T was associated with a significant 0.7% decrease (95%CI: -1.24, -0.20) in FVC and a 5% increase in the 7-day moving average RH was associated with a significant 0.2% decrease (95%CI: -0.40, -0.02) in FVC and FEV1. The associations with T were greater when combined with higher exposures of black carbon with a 1.6% decrease (95%CI -2.2; -0.9) in FVC and a 1% decrease (95%CI -1.7; -0.4) in FEV1. The relationships between T and RH and lung function were linear. No synergistic effect of T and RH was found. Heat and lung function are two predictors of mortality. Our findings suggest that increases in temperature and relative humidity are related to decreases in lung function, and such observations might be amplified by high black carbon levels.

KEYWORDS:

Adult; Air pollution; Black carbon; Climate; Cohort; Respiratory health

PMID:
29684737
PMCID:
PMC5999568
[Available on 2019-08-01]
DOI:
10.1016/j.envres.2018.03.039

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center