Format

Send to

Choose Destination
ACS Appl Mater Interfaces. 2018 May 9;10(18):15829-15840. doi: 10.1021/acsami.8b01438. Epub 2018 Apr 30.

Low-Temperature Fabrication of Robust, Transparent, and Flexible Thin-Film Transistors with a Nanolaminated Insulator.

Author information

1
School of Electrical Engineering , KAIST , Daejeon 34141 , Republic of Korea.

Abstract

The lack of reliable, transparent, and flexible electrodes and insulators for applications in thin-film transistors (TFTs) makes it difficult to commercialize transparent, flexible TFTs (TF-TFTs). More specifically, conventional high process temperatures and the brittleness of these elements have been hurdles in developing flexible substrates vulnerable to heat. Here, we propose electrode and insulator fabrication techniques considering process temperature, transmittance, flexibility, and environmental stability. A transparent and flexible indium tin oxide (ITO)/Ag/ITO (IAI) electrode and an Al2O3/MgO (AM)-laminated insulator were optimized at the low temperature of 70 °C for the fabrication of TF-TFTs on a polyethylene terephthalate (PET) substrate. The optimized IAI electrode with a sheet resistance of 7 Ω/sq exhibited the luminous transmittance of 85.17% and maintained its electrical conductivity after exposure to damp heat conditions because of an environmentally stable ITO capping layer. In addition, the electrical conductivity of IAI was maintained after 10 000 bending cycles with a tensile strain of 3% because of the ductile Ag film. In the metal/insulator/metal structure, the insulating and mechanical properties of the optimized AM-laminated film deposited at 70 °C were significantly improved because of the highly dense nanolaminate system, compared to those of the Al2O3 film deposited at 70 °C. In addition, the amorphous indium-gallium-zinc oxide (a-IGZO) was used as the active channel for TF-TFTs because of its excellent chemical stability. In the environmental stability test, the ITO, a-IGZO, and AM-laminated films showed the excellent environmental stability. Therefore, our IGZO-based TFT with IAI electrodes and the 70 °C AM-laminated insulator was fabricated to evaluate robustness, transparency, flexibility, and process temperature, resulting in transfer characteristics comparable to those of an IGZO-based TFT with a 150 °C Al2O3 insulator.

KEYWORDS:

dielectric−metal−dielectric (DMD); environmental stability; gate insulator; nanolaminate; thin-film transistor; transparent and flexible

PMID:
29672018
DOI:
10.1021/acsami.8b01438

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center