Send to

Choose Destination
Mol Carcinog. 2018 Aug;57(8):1055-1066. doi: 10.1002/mc.22825. Epub 2018 May 2.

Phenylbutyl isoselenocyanate induces reactive oxygen species to inhibit androgen receptor and to initiate p53-mediated apoptosis in LNCaP prostate cancer cells.

Author information

Department of Pharmacology, Pennsylvania State College of Medicine, Hershey, Pennsylvania.
Penn State Cancer Institute, Pennsylvania State College of Medicine, Hershey, Pennsylvania.


Previous studies have established the in vivo bioavailability and efficacious dosages of phenylbutyl isoselenocyanate (ISC-4), a selenium-substituted isothiocyanate, against mouse xenograft models of human melanoma and colorectal cancer. To explore its potential attributes against prostate cancer, we treated human LNCaP prostate cancer cells with ISC-4 and examined their apoptosis responses, and interrogated the signaling mechanisms through pharmacological and siRNA knockdown approaches. Our results show that ISC-4 was more potent at inducing apoptosis than its sulfur analog phenylbutyl isothiocyanate (PBITC) without suppressing protein kinase AKT Ser473 phosphorylation. ISC-4 induced apoptosis in concentration- and time-dependent manners, and the apoptosis execution was attenuated by pre-incubation with a pan caspase inhibitor. ISC-4 decreased the abundance of androgen receptor (AR) and its best known target prostate specific antigen (PSA) without decreasing their steady state mRNA. ISC-4 upregulated the abundance of p53 protein and its Ser15 -phosphorylative activation, and that of DNA double strand break marker Ser139 -p-H2A.X coincident with apoptotic exposure. Similar to the rapid induction of reactive oxygen species (ROS) by isothiocyanates, ISC-4 increased dihydroethidium-detectable signals in LNCaP cells. Pre-incubation with ROS scavenger N-acetyl-l-cysteine preserved AR and PSA abundance, markedly reduced ISC-4-induced apoptosis and attenuated p53 Ser phosphorylation, p21Cip1, and p-H2A.X. Furthermore, siRNA knockdown of p53 did not suppress ROS production, but decreased ISC-4-induced apoptosis. Knocking down p53-targets PUMA and Bax exerted greater protective effect on ISC-4-induced apoptosis than depleting p21Cip1. In summary, ISC-4 inhibited LNCaP cell growth and survival with ROS-mediated suppression of AR axis signaling and induction of p53-PUMA-Bax mitochondrial apoptosis.


apoptosis; isoselenocyanate; isothiocyanate; p53; prostate cancer

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center