Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability

Waste Manag. 2018 Jun:76:147-171. doi: 10.1016/j.wasman.2018.03.041. Epub 2018 Apr 3.

Abstract

The recycling of any kind of plastic to convert it in valuable products is one of the main challenges of today's society. Besides, if the recycling process is itself green, then it would be a great achievement. This paper reviews the way covered from the first attempts of reusing the polyurethane (PU) scraps as a filler for cushions to the last chemical routes employing green recycling agents. Polyurethane is the 6th most used polymer all over the world with a production of 18 millions tons per year, which means a daily production of PU specialties greater than 1 million of cubic meters, equivalent to the volume of the Empire State Building. The thermostable nature of the majority of the polyurethanes specialties has made that the preferred solution for their recycling are the chemical recycling processes. Among them, glycolysis is the one that receives a greater attention from an industrial point of view, so this review puts the spotlight on it. However, the existing reviews in literature do not paid a special attention on glycolysis and only give a superficial description of the process. Nevertheless, in the present review, the scientific literature relative to glycolysis is completely reviewed, updated and ordered according the type of PU specialty recycled. Additionally, the other main chemical recycling processes are also revisited in a more extended and deeper way than in the previous approaches to this topic. Moreover, it is crucial to take into account that some of these technologies, which were described in the literature as promising technologies at laboratory scale are now commercial processes running at industrial scale. For that reason, it is essential to remark that the present review comprises not only a detailed state of art of the scientific literature on the subject, also includes a detailed revision of the past and running on pilot plants and industrial facilities, including several patents, which has never been covered in the current literature. Moreover, this review also describes the most recent studies employing crude glycerol (biodiesel subproduct) as an economic, sustainable and environmental friendly cleavage agent, which should lead the way to the industrial implantation of split-phase glycolysis in a near future, providing high quality recovered products, susceptible of replacing raw ones in the synthesis of new PU specialties. What is more, this review intends that any reader could know and understand the reactions involved in the polyurethane chemistry and recycling, the main polyurethanes types and the fundamentals of the recycling strategies in order to comprehend what are the advantages and drawbacks of each recycling process as starting point for looking for new advantageous alternatives from an environmental, technical and economic point of view. Broader context. This paper reviews the main advances in the polyurethane (PU) recycling field, from laboratory and academia processes to pilot plant and industrial scale ones, including the most relevant patents in the subject. Opposite to other common used plastics, PUs are not polymerization but condensation polymers, synthesized from polyols and isocyanates. The wide diversity of polyols and isocyanates allows the synthesis of numerous different compounds covering a huge range of applications. As a direct consequence of their commercial success, an increasing quantity of PU waste is being disposed by landfilling in the last decades. Such waste comprises not only post-consumer products but also scrap from slabstock manufacturing, which can reach the 10% of the total foam production. However, the massive enforcement of the environmental laws is pointing out a new route in the polymer waste removal sector based in the polymer recycling, and this fact has placed the research in waste treatment as one of the most prolific topics nowadays. In fact, polymer recycling processes have experienced a growing attention from the research and industrial worlds as a direct result of the enforcement of the environmental legislations. Hence, it is essential to develop new environmental sustainable recycling processes with the aim of conserving the natural resources, reducing the amount of waste disposed in landfills and enhancing the sustainability for forthcoming generation.

Keywords: Glycolysis; Industrial plant; Polyol; Polyurethane; Recycling.

Publication types

  • Review

MeSH terms

  • Biofuels
  • Plastics
  • Polyurethanes*
  • Recycling*
  • Waste Disposal Facilities

Substances

  • Biofuels
  • Plastics
  • Polyurethanes