Format

Send to

Choose Destination
Sci Rep. 2018 Apr 3;8(1):5484. doi: 10.1038/s41598-018-23928-9.

Collective electrical oscillations of a diatom population induced by dark stress.

Author information

1
Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom. p.rocha@bath.ac.uk.
2
IPMA - Instituto Português do Mar e da Atmosfera, I. P., Av. Brasília, 1449-006, Lisboa, Portugal.
3
CCMAR - Centre for Marine Sciences, Universidade do Algarve, Campus de Gambelas, Ed.7, 8005-139, Portugal.
4
Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
5
Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
6
Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-343, Oeiras, Portugal.
7
Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands.

Abstract

Diatoms are photosynthetic microalgae, a group with a major environmental role on the planet due to the biogeochemical cycling of silica and global fixation of carbon. However, they can evolve into harmful blooms through a resourceful communication mechanism, not yet fully understood. Here, we demonstrate that a population of diatoms under darkness show quasi-periodic electrical oscillations, or intercellular waves. The origin is paracrine signaling, which is a feedback, or survival, mechanism that counteracts changes in the physicochemical environment. The intracellular messenger is related to Ca2+ ions since spatiotemporal changes in their concentration match the characteristics of the intercellular waves. Our conclusion is supported by using a Ca2+ channel inhibitor. The transport of Ca2+ ions through the membrane to the extracellular medium is blocked and the intercellular waves disappear. The translation of microalgae cooperative signaling paves the way for early detection and prevention of harmful blooms and an extensive range of stress-induced alterations in the aquatic ecosystem.

PMID:
29615779
PMCID:
PMC5883020
DOI:
10.1038/s41598-018-23928-9
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center