Format

Send to

Choose Destination
J Cataract Refract Surg. 2018 Mar;44(3):390-398. doi: 10.1016/j.jcrs.2017.10.054. Epub 2018 Mar 31.

Corneal biomechanics after laser refractive surgery: Unmasking differences between techniques.

Author information

1
From the Department of Ophthalmology (Qvision) (Fernández, Rodríguez-Vallejo, Martínez, Tauste), Vithas Virgen del Mar Hospital and the Department of Ophthalmology (Fernández, Piñero), Torrecárdenas Hospital Complex, Almería, and the Department of Optics, Pharmacology and Anatomy (Piñero), University of Alicante, and the Department of Ophthalmology (Piñero), Vithas Medimar International Hospital, Alicante, Spain.
2
From the Department of Ophthalmology (Qvision) (Fernández, Rodríguez-Vallejo, Martínez, Tauste), Vithas Virgen del Mar Hospital and the Department of Ophthalmology (Fernández, Piñero), Torrecárdenas Hospital Complex, Almería, and the Department of Optics, Pharmacology and Anatomy (Piñero), University of Alicante, and the Department of Ophthalmology (Piñero), Vithas Medimar International Hospital, Alicante, Spain. Electronic address: manuelrodriguezid@qvision.es.

Abstract

The hypothesis that small-incision lenticule extraction provides better preservation of corneal biomechanics than previous laser refractive techniques has led to a growth in the interest in clinical and experimental research in this field. This hypothesis is based on the fact that corneal layers with greater stiffness are preserved with this new technique. However, this hypothesis is controversial because clinical research has shown a great disparity in the outcomes. In this review, we performed an in-depth analysis of the factors that might affect corneal biomechanics in laser refractive surgery procedures from a macrostructural to a microstructural viewpoint. New advances in algorithms with current devices or the introduction of new devices might help unmask the possible advantages of small-incision lenticule extraction in corneal biomechanics.

PMID:
29615281
DOI:
10.1016/j.jcrs.2017.10.054

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center