Format

Send to

Choose Destination
Cell Chem Biol. 2018 Jun 21;25(6):677-690.e12. doi: 10.1016/j.chembiol.2018.02.012. Epub 2018 Mar 29.

Targeting Phosphopeptide Recognition by the Human BRCA1 Tandem BRCT Domain to Interrupt BRCA1-Dependent Signaling.

Author information

1
Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India.
2
Center for Chemical Biology & Therapeutics, InSTEM, Bellary Road, Bangalore, Karnataka 560065, India; Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK. Electronic address: ashokv@ncbs.res.in.

Abstract

Intracellular signals triggered by DNA breakage flow through proteins containing BRCT (BRCA1 C-terminal) domains. This family, comprising 23 conserved phosphopeptide-binding modules in man, is inaccessible to small-molecule chemical inhibitors. Here, we develop Bractoppin, a drug-like inhibitor of phosphopeptide recognition by the human BRCA1 tandem (t)BRCT domain, which selectively inhibits substrate binding with nanomolar potency in vitro. Structure-activity exploration suggests that Bractoppin engages BRCA1 tBRCT residues recognizing pSer in the consensus motif, pSer-Pro-Thr-Phe, plus an abutting hydrophobic pocket that is distinct in structurally related BRCT domains, conferring selectivity. In cells, Bractoppin inhibits substrate recognition detected by Förster resonance energy transfer, and diminishes BRCA1 recruitment to DNA breaks, in turn suppressing damage-induced G2 arrest and assembly of the recombinase, RAD51. But damage-induced MDC1 recruitment, single-stranded DNA (ssDNA) generation, and TOPBP1 recruitment remain unaffected. Thus, an inhibitor of phosphopeptide recognition selectively interrupts BRCA1 tBRCT-dependent signals evoked by DNA damage.

KEYWORDS:

BRCA1; BRCT domain; DNA damage response; drug-like inhibitor; lead discovery; structure-activity relationship

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center