Format

Send to

Choose Destination
Nature. 2018 Apr 5;556(7699):113-117. doi: 10.1038/nature25986. Epub 2018 Mar 28.

Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.

Author information

1
School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
2
Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
3
Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
4
GlaxoSmithKline, Gunnelswood Road, Stevenage, Hertfordshire, UK.
5
MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
6
Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
7
MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK.
8
School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
9
School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
10
Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK.
11
Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
12
GlaxoSmithKline, Park Road, Ware, Hertfordshire, UK.
13
Cellzome, GlaxoSmithKline R&D, Heidelberg, Germany.
14
WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
15
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Abstract

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.

PMID:
29590092
PMCID:
PMC6047741
DOI:
10.1038/nature25986
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center