Format

Send to

Choose Destination
PLoS One. 2018 Mar 27;13(3):e0195008. doi: 10.1371/journal.pone.0195008. eCollection 2018.

Oral administration of Pantoea agglomerans-derived lipopolysaccharide prevents development of atherosclerosis in high-fat diet-fed apoE-deficient mice via ameliorating hyperlipidemia, pro-inflammatory mediators and oxidative responses.

Author information

1
Departments of Integrated and Holistic Immunology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
2
Control of Innate Immunity, Technology Research Association, Kagawa, Japan.
3
Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
4
Macrophi Inc., Kagawa, Japan.
5
Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan.
6
Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan.

Abstract

Pantoea agglomerans (P. agglomerans) is a Gram-negative bacterium that grows symbiotically with various edible plants, and the oral or sublingual administration of lipopolysaccharide derived from P. agglomerans (LPSp) have been suggested to contribute to prevention of immune-related diseases. Our previous study indicated that orally administered LPSp was shown to exhibit an LDL-lowering effect in hyperlipidemic volunteers; however, a preventive effect of LPSp on atherosclerosis is unclear. The present study attempted to evaluate the anti-atherosclerotic effect by LPSp in a mouse model of high-fat diet (HFD)-induced atherosclerosis. For 16 weeks, apoE-deficient mice were fed an HFD and received drinking water containing LPSp (0.3 or 1 mg/kg body weight/day). The results showed that the orally administered LPSp decreased body weight. A significant reduction in atherosclerotic plaque deposition was observed even with the lower dose of LPSp. The biochemical analyses showed that LPSp markedly improved glucose tolerance and reduced plasma LDL and oxidized LDL levels. In addition, LPSp significantly reduced the production of pro-inflammatory mediators including MCP-1 (in the plasma), TNF-α and IL-6 (in the colon), and decreased the oxidative burst activities in the peripheral blood sample. Taken together, these results suggest the possibility that oral administration of LPSp can effectively ameliorate HFD-induced hyperlipidemia and inflammatory/oxidative responses to prevent atherosclerosis and related metabolic disorders.

PMID:
29584779
PMCID:
PMC5871011
DOI:
10.1371/journal.pone.0195008
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center