Format

Send to

Choose Destination
Hepatology. 2018 Sep;68(3):964-976. doi: 10.1002/hep.29884. Epub 2018 Jun 6.

Argininosuccinate synthase 1 and periportal gene expression in sonic hedgehog hepatocellular adenomas.

Author information

1
Inserm UMR-1162, Génomique fonctionnelle des Tumeurs solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France.
2
Liver unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, APHP, Bondy, France.
3
Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.
4
Service d'anatomopathologie, Hôpital Beaujon, Clichy, Centre de Recherche sur l'inflammation, UMR 1149, INSERM-Paris Diderot University, Paris, France.
5
Service d'anatomopathologie, Hôpital Henri Mondor, Créteil; Université Paris Est Créteil, Inserm U955, Team 18, Institut Mondor de Recherche Biomédicale, Paris, France.
6
Hôpital Europeen Georges Pompidou, HEGP, F-75015, Assistance Publique-Hôpitaux de Paris, APHP, Paris, France.

Abstract

Genetic alterations define different molecular subclasses of hepatocellular adenoma (HCA) linked with risk factors, histology and clinical behavior. Recently, Argininosuccinate Synthase 1 (ASS1), a major periportal protein, was proposed as a marker of HCA with a high risk of hemorrhage. We aimed to assess the significance of ASS1 expression through the scope of the HCA molecular classification. ASS1 expression was evaluated using RNAseq, quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and Immunohistochemistry. ASS1 and glioma-associated oncogene 1 (GLI1) expression were analyzed in vitro after modulation of GLI1 expression. Using RNAseq in 27 HCA and five nontumor liver samples, ASS1 expression was highly correlated with GLI1 expression (P<0.0001, R=0.75). In the overall series of 408 HCA, ASS1 overexpression was significantly associated with sonic hedgehog HCA (shHCA) compared to other molecular subgroups (P<0.0001), suggesting that sonic hedgehog signaling controls ASS1 expression. GLI1 expression silencing by siRNA induced a downregulation of ASS1 in PLC/PFR5 and SNU878 cell lines. In 390 HCA, we showed that ASS1 expression belonged to the periportal expression program that was maintained in shHCA but down-regulated in all the other HCA subtypes. In contrast, HCA with β-catenin activation showed an activation of a perivenous program. Despite the significant association between GLI1 and ASS1 expression, ASS1 mRNA expression was not associated with specific clinical features. At the protein level using immunohistochemistry, prostaglandin D synthase (PTGDS) was strongly and specifically overexpressed in shHCA.

CONCLUSION:

ASS1 is associated with sonic hedgehog activation as part of a periportal program expressed in shHCA, a molecular subgroup defined by INHBE-GLI1 gene fusion. (Hepatology 2018).

PMID:
29572896
DOI:
10.1002/hep.29884
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center