Format

Send to

Choose Destination
Mol Neurobiol. 2018 Nov;55(11):8538-8549. doi: 10.1007/s12035-018-1003-2. Epub 2018 Mar 21.

Kynurenic Acid Restores Nrf2 Levels and Prevents Quinolinic Acid-Induced Toxicity in Rat Striatal Slices.

Author information

1
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
2
Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
3
Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, BR 472, Km 585, 118, Uruguaiana, RS, CEP 97500-970, Brazil.
4
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil. wyse@ufrgs.br.
5
Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil. wyse@ufrgs.br.
6
Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil. wyse@ufrgs.br.

Abstract

Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites produced in the degradation of tryptophan and have important neurological activities. KYNA/QUIN ratio changes are known to be associated with central nervous system disorders, such Alzheimer, Parkinson, and Huntington diseases. In the present study, we investigate the ability of KYNA in prevent the first events preceding QUIN-induced neurodegeneration in striatal slices of rat. We evaluated the protective effect of KYNA on oxidative status (reactive oxygen species production, antioxidant enzymes activities, lipid peroxidation, nitrite levels, protein and DNA damage, and iNOS immunocontent), mitochondrial function (mitochondrial mass, membrane potential, and respiratory chain enzymes), and Na+,K+-ATPase in striatal slices of rats treated with QUIN. Since QUIN alters the levels of Nrf2, we evaluated the influence of KYNA protection on this parameter. Striatal slices from 30-day-old Wistar rats were preincubated with KYNA (100 μM) for 15 min, followed by incubation with 100-μM QUIN for 30 min. Results showed that KYNA prevented the increase of ROS production caused by QUIN and restored antioxidant enzyme activities and the protein and lipid damage, as well as the Nrf2 levels. KYNA also prevented the effects of QUIN on mitochondrial mass and mitochondrial membrane potential, as well as the decrease in the activities of complex II, SDH, and Na+,K+-ATPase. We suggest that KYNA prevents changes in Nrf2 levels, oxidative imbalance, and mitochondrial dysfunction caused by QUIN in striatal slices. This study elucidates some of the protective effects of KYNA against the damage caused by QUIN toxicity.

KEYWORDS:

Kynurenic acid; Mitochondrial function; Nrf2; Oxidative status; Quinolinic acid

PMID:
29564809
DOI:
10.1007/s12035-018-1003-2

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center