Send to

Choose Destination
Biochim Biophys Acta Mol Cell Res. 2018 Jun;1865(6):855-862. doi: 10.1016/j.bbamcr.2018.03.007. Epub 2018 Mar 17.

Store-independent coupling between the Secretory Pathway Ca2+ transport ATPase SPCA1 and Orai1 in Golgi stress and Hailey-Hailey disease.

Author information

Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.
Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Belgium; VIB Center for Brain & Disease Research, Leuven, Belgium.
Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Belgium. Electronic address:


The Secretory Pathway Ca2+ ATPases SPCA1 and SPCA2 transport Ca2+ and Mn2+ into the Golgi and Secretory Pathway. SPCA2 mediates store-independent Ca2+ entry (SICE) via STIM1-independent activation of Orai1, inducing constitutive Ca2+ influx in mammary epithelial cells during lactation. Here, we show that like SPCA2, also the overexpression of the ubiquitous SPCA1 induces cytosolic Ca2+ influx, which is abolished by Orai1 knockdown and occurs independently of STIM1. This process elevates the Ca2+ concentration in the cytosol and in the non-endoplasmic reticulum (ER) stores, pointing to a functional coupling between Orai1 and SPCA1. In agreement with this, we demonstrate via Total Internal Reflection Fluorescence microscopy that Orai1 and SPCA1a co-localize near the plasma membrane. Interestingly, SPCA1 overexpression also induces Golgi swelling, which coincides with translocation of the transcription factor TFE3 to the nucleus, a marker of Golgi stress. The induction of Golgi stress depends on a combination of SPCA1 activity and SICE, suggesting a role for the increased Ca2+ level in the non-ER stores. Finally, we tested whether impaired SPCA1a/Orai1 coupling may be implicated in the skin disorder Hailey-Hailey disease (HHD), which is caused by SPCA1 loss-of-function. We identified HHD-associated SPCA1a mutations that impair either the Ca2+ transport function, Orai1 activation, or both, while all mutations affect the Ca2+ content of the non-ER stores. Thus, the functional coupling between SPCA1 and Orai1 increases cytosolic and intraluminal Ca2+ levels, representing a novel mechanism of SICE that may be affected in HHD.


Breast cancer; Calcium transport; Golgi stress response; Organelle contact site; Store operated Ca(2+) entry

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center