Send to

Choose Destination
J Am Chem Soc. 2018 Apr 4;140(13):4596-4603. doi: 10.1021/jacs.7b13706. Epub 2018 Mar 21.

Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations.

Author information

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , P.R. China.
School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan 430070 , P.R. China.
NIST Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , Maryland 20899-6102 , United States.
Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249-0698 , United States.
Department of Chemical and Environmental Sciences , University of Limerick , Limerick V94 T9PX , Republic of Ireland.


Research on hydrogen-bonded organic frameworks (HOFs) has been developed for quite a long time; however, those with both established permanent porosities and functional properties are extremely rare due to weak hydrogen-bonding interactions among molecular organic linkers, which are much more fragile and difficult to stabilize. Herein, through judiciously combining the superiority of both the moderately stable coordination bonds in metal-organic frameworks and hydrogen bonds, we have realized a microporous hydrogen-bonded metal-complex or metallotecton framework HOF-21, which not only shows permanent porosity, but also exhibits highly selective separation performance of C2H2/C2H4 at room temperature. The outstanding separation performance can be ascribed to sieving effect confined by the fine-tuning pores and the superimposed hydrogen-bonding interaction between C2H2 and SiF62- on both ends as validated by both modeling and neutron powder diffraction experiments. More importantly, the collapsed HOF-21 can be restored by simply immersing it into water or salt solution. To the best of our knowledge, such extraordinary water stability and restorability of HOF-21 were observed for the first time in HOFs, underlying the bright perspective of such new HOF materials for their industrial usage.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center