Format

Send to

Choose Destination
Transfusion. 2018 Jul;58(7):1792-1799. doi: 10.1111/trf.14577. Epub 2018 Mar 13.

Noninvasive prenatal paternity testing using targeted massively parallel sequencing.

Qu N1,2, Xie Y3,4, Li H5, Liang H1,2, Lin S6, Huang E1,2, Gao J7, Chen F3, Shi Y1,2, Ou X1,2.

Author information

1
Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Beijing, P.R. China.
2
Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510089, P.R. China.
3
BGI Education Center, University of Chinese Academy of Sciences, Beijing, P.R. China.
4
BGI-Shenzhen, Shenzhen, P.R. China.
5
The Center of Criminal Technology of Guangdong Province, Guangzhou, 510050, P.R. China.
6
Fetal Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510050, P.R. China.
7
Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China.

Abstract

BACKGROUND:

Recent advances in massively parallel sequencing (MPS) technology have provided efficient methods for noninvasive prenatal paternity testing (NIPAT). However, a well-accepted protocol has not been established. The present study developed an MPS-based approach for NIPAT and compared the performance of two recently reported methods for MPS data interpretation.

STUDY DESIGN AND METHODS:

We selected 1795 unlinked polymorphic single-nucleotide polymorphisms (SNPs) and performed paternity analysis in 34 real parentage test cases with maternal plasma samples using the Illumina HiSeq platform. Sequencing data were interpreted by the straightforward counting method for the identification of paternal alleles and mathematical algorithms for paternity index (PI) calculation, respectively.

RESULTS:

Based on the sequencing data from each family case, both of the two statistical approaches produced a significant separation between the biological father and 90 unrelated males (p < 0.0001) when sufficient effective loci were attained. Nevertheless, up to 30.82% of real paternal alleles were filtered by a predefined cutoff and resulted in insufficient effective loci, especially in plasma samples with low fetal fraction (approx. 90.60% were filtered). In contrast, the PI calculation model utilized all maternal homozygous SNPs as effective loci (approx. 40% of total SNPs) and successfully identified the correct biological father, with the log-transformed combined PI (Lg(CPI)) value varying from 68.23 to 158.01 in each family case.

CONCLUSION:

Our study illustrates that the Bayesian approach represents the better choice in NIPAT data interpretation. Further, the adoption of more informative markers (e.g., tri-allelic SNPs, tetra-allelic SNPs, and micro-haplotypes) or deeper sequencing is recommended for the improvement of the testing efficiency.

PMID:
29536546
DOI:
10.1111/trf.14577
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center